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A version of the geometrically nonlinear theory of elastic muitilayered shells
subjected to a nonconservative load is proposed. Transverse shear strains in the
layers and strains in the direction of the normal to the middle surface are taken
into account, As a rule, a description of the nonstationary dynamical processes
associated with shell buckling can be performed on the basis of a geometrically
nonlinear theory [1]. The behavior of multilayered plates and shells under large
deflections has been examined in [2—5]. A variational formulation, which is
valid for conservative loads acting on a shell, is used in [5] to derive the geomet-
rically nonlinear equations. The variational principle is formulated in this paper
in a form also applicable in the case of no potential of the external forces. One
of the advantages of the approach developed here as compared with the results
of [5] is the additional possibility of describing the local dynamical buckling of
the shell in modes associated with the change in its thickness,

1, Variational principle for a three-dimensional body, The vari-
ational principle of elasticity theory for a three-dimensional body under large displace-
ments is written as follows:

ty
1 1 .
8Jo=24 S (3 {— 5 El’fﬂeiksﬂ + otk ["’ik—' 9" (“ik + Myt “{!nki)] + (1.1
0
= 1 Bu; gyt
0% (ny, — V) + 5 p 57 T} v + § Pluds +
1

§(uk—Uk)9"‘nidS)=0, i, k=1,2, 3
2 .

5Pt =0 (1.2

Here Eikil is the elasticity tensor, p is the material density, u; are the displacement
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vector components in the metric g;; of an undeformed body, V is the volume of the
undeformed body, S, is the part of the body surface on which the load is given, S, is
the part of the surface with given displacements, and ¢ is the time. Here P* is under-
stood to be the vector of the nonconservative external force. The meaning of the remain-
ing quantities in (1. 1) is clarified as a result of the variation. The additional condition
(1. 2) permits finding the value of the functional (1. 1) for given admissible functions

and comparing its values corresponding to different admissible functions. The variational
principle of dynamics written in such form can be used in deriving the fundamental re~
lationships for a three-dimensional body under a nonconservative load [6].

For an independent variation of u;, ek, 15, 0%, ¥ we can obtain from (1. 1) and
(1.2)
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from which follow the equations of motion, the kinematic relationships, the elasticity
relationships, the natural boundary conditions for the stresses and displacements of a
three-dimensional body under large displacements.

2, Varlational principle for a layer. A shallowshell of altemating elastic
isotropic layers of areinforcing material and abinder(matrix) is considered. All the reinfor-
cing layers are identical, the thickness of eachlayer is %, and the density of the mater-
ial is p,. All the binder layers are also identical, their thickness is denoted by 4, and
density by p,;. The thickness of the shell "as a whole" is 4. If the number n = hf(h, +
hy) corresponding to the quantity of pairs of layers is an integer, the shell construction
is nonsymmetric in thickness. In the case of a structure symmetric relative to the middle
surface, the number » is not an integer and depends on the relationshipbetween the layer
thicknesses.

It is possible to go from the functional for a three-dimensional body to the functional
of shell theory for a layer by using the following hypotheses [7] (the reinforcing layer is
used as an illustration without lmiting generality):

the metric remains invariant over the layer thickness (and over the thickness of the
whole shell); a,5 and b,g (@, p = 1,2) are tensors of the first and second quadratic
forms of the shell middle surface with which the curvilinear coordinates x4, z,2, xz,3
are related (z,® is directed along the normal) ;

the quantities being varied change across the layer thickness in conformity with the
dependences
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There results from the relationships three to nine in (2. 1) that
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The integrals here are taken between the limits — k,/2 and h /2.
The following notation

Tad=hyf2
{924, 94, Pany Poa} = {Pan, Py, 743 Py, 743 Pyy)

h/a
{NaA:NAyKaA} = {PaAapaA,xAspaA} dxAs

—h/3

is introduced for the loads acting on the outer surfaces and along the layer outlines.
Substitution of the relationships presented into (1. 1) and (1. 2) and integration over

the layer thickness permits obtaining an expression of the variational principle for the
layer-shell 6J,, = 0. All the equations and dynamics relationships for an elastic iso-
tropic reinforcing layer-shell, which are analogous to the equations in [7, 8], follow from
this variational principle. Corresponding relations are derived also for the matrix layer.

3. Variational principle for a multilayered shell, The 2!, 22 3
coordinate system is connected with the middle surface of a multilayered shell. It is
assumed that the displacement vector components are distributed as follows over the
shell thickness

Uy = U, + 2@y, ug = w + 2Qs (3.1)
The displacements u, and u, agree, respectively, with v, 4, U, and wy, wy on the
coordinate surfaces of the separate layers.

The condition that the displacements on the contact surfaces of adjacent layers is
equal, reduces by analogy with [9] to the relationships

% = npaA + (1 - S) \paM! Py — 'npaA + (1 - 8) ‘PsM (3-2)

Here s = h, /(hg + hp).

In describing an equivalent sheil model from a quasi-homogeneous material, the quan-
tities ¢, ), and VPypr are eliminated from consideration by using the relationships(3.2) ;
the subscript 4 in the ¥, 4.¥34 and other quantities characterizing the reinforcing lay-
ers is omitted.

The following hypotheses about the strain distribution over the thickness of an equiva-
lent continuous shell are introduced:
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The distribution of the internal forces and moments is assumed to be according to the

following laws:
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Therefore, the distribution of the longitudinal and flexural strains and microstrains, as
well as of the corresponding forces and moments is taken to be linear over the thickness.
The distribution of the transverse strains and forces over the thickness is described by
using the even functions f(z) and f* () which satisfy the conditions (here and every-
where below, the integrals are taken over the thickness of the shell as a whole unless spe-
cified otherwise) S
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There follows from (3. 4) and (3. 5)
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The following notation is also introduced:
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The energy smoothing operation [10] applied to variational relationships with addition-
al conditions for the reinforcing layer and the matrix layer results in formulation of a
variational principle analogous to (1. 1) with additional conditions of the type (1. 2) for
a multilayered shell considered as a continuous shell with internal moments.

The variational principle permits derivation of fundamental relations for an elastic
multilayered shell subjected to nonconservative loads. These relations are written below,

The equations of motion are;
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The kinematic relationships are :
¢ap = Va%p — bags  Vap=Va®Pp— bapgs
0, =Vow + bygvg, Ty =V, g+ by 9P
Cap=Va¥g—bap¥s Mg =Vgby+ baa‘pB
V= Qp g =V V3= Y=,



166 M.S.Gersnteln

%ap =112 (Vag + Vo T €0 Vay + €g. Wy + 0ug + 0Ty

kap =12 (Cap + Spa T €0 Epy + €5 Say + Oglig + Oglq)

B =2%p — Fop

By = Yokt (0 + Vg F €qgt) By = ok [V — 1 + g (¥ —1F)]

Bs = k*2 %[203 + v*va 1 1 s (v* — %) (Vg — la)J

s

1
Es = k*? T[ZUS-—Zts—]—UaUa—Lata—}— 5 (0 — %) (v, —La)]

The elasticity relationships are:
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The relationships
B =g, 0%+ 24, pa*"aP®
are used here.
The boundary conditions are:
on the contour C,
*Pn, = N®, ®n, =N, y** 422 =K% B PLLE A
on the contour C,
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The equations and relationships obtained above result in known dependences in a num-
ber of particular cases [2—5, 9, 10].
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The motion of gas which initially fills the whole space and is subjected to an
instantaneous liberation in a thin layer of initial internal energy E, and momen-
tum I, is considered, The asymptotic behavior of solution for various relations
between E, and [, is investigated numerically.

When solving unsteady problems of gasdynamics it is often interesting to investigate
the asymptotic properties of motion, which are determined for a fairly long time z and
are independent of initial data details. In the majority of cases these properties are de-
fined by self-similar solutions, The transition of the flow to the self-similar mtode cam
be traced by solving the exact problem with initial and boundary conditions for the input
Euler equations.

Let us consider the plane motion of a perfect inviscid gas free of thermal conductivity



