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A version of the geometrically nonlinear theory of elastic multilayered shells 
subjected to a nonconservative load is proposed. Transverse shear strains in the 
layers and strains in the direction of the normal to the middle surface are taken 
into account. As a rule, a description of the nonstationary dynamical processes 
associated with shell buckling can be performed on the basis of a geometrically 
nonlinear theory [1]. The behavior of multilayered plates and shells under large 
deflections has been examined in [2--5]. A variational formulation, which is 
valid for conservative loads acting on a shell, is used in [5] to derive the geomet. 
ricaily nonlinear equations. The variational principle is formulated in this l~per 
in a form also applicable in the case of no potential of the external forces. One 
of the advantages of the approach developed here as compared with the results 
of [5] is the additional possibility of describing the local dynamical buckling of 
the shell in modes associated with the change in its thickness. 

1. V&r iAt iona l  p r i n c i p l e  for a t h r e e - d i r n e a t i o n a l  b o d y .  Thevari-  
ational principle of elasticity theory for a three-dimensional body under large displace- 
ments is written as follows: 
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Here 

(1.2)  

E ikj~ is the elasticity tensor, p is the material density, ui are the displacement 



vector components in the metric g~s of an undeformed body, V is the volume of the 
undeformed body, S~ is the part of the body surface on which the load is given, S~ is 
the part of the surface with given displacements, and t is the time. Here pt  is under- 
stood to be the vector of the nonconservative external force. The meaning of the remain- 
ing quantities in (1.1) is clarified as a result of the variation. The additional condition 
(1.2) permits finding the value of the functional (1. 1) for given admissible functions 
and comparing its values corresponding to different admissible functions. The variational 
principle of dynamics written in such form can be used in deriving the fundamental re- 
lationships for a three-dimensional body under a nonconservative load [6]. 

For an independent variation of ul, ei~, ~li~, 0 i~, zi~ we can obtain from (1.1) and 
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from which follow the equations of motion, the kinematic relationshil~, the elasticity 
relationshil~, the natural boundary conditions for the stresses and displacements of a 
three-dimensional body under large displacements. 

2 ,  Y a t t a t i o n t l  p t / n c / p l $  f o r  a l a y t t ,  A shaUowshellofalternatingelastic 
isotropic layers of a reinforcing material and a binder(matrix) is congdered, All the reinfor- 
cing layers are identical, the thickness of each layer is h A and the den~tty of the mater- 
ial is PA" All the binder layers are also identical, their thickness is denoted by h M and 
density by PM. The thickness of the shell "as a whole" is h. If the number n = h / ( h  A -]- 

h M) corresponding to the quantity of pairs of layers is an integer, the shell construction 
is nonsymmetric in thickness. In the case of a structure symmetric relative to the middle 
surface, the number n is not art integer and depends on the relationshipbetween the layer 
thicknesses. 

It is possible to go from the functional for a three-dimensional body to the functional 
of shell theory for a layer by using the following hypotheses [7] (the reinforcing layer is 
used as an illustration without 11miting generality) : 

the metric remains invariant over the layer thickness (and over the thickness of the 
whole shell) ; a~ and b~ (o~, ~ ---- 1,2) are tensors of the first and second quadratic 
forms of the shell middle surface with which the curvilinear coordinates xA1 , xA s, xAa 
are related (xA'~ iS directed along the normal) ; 

the quantities being varied change across the layer thickness in conformity with the 
dependences 

u~,A = v~,A + zA~*~,,,,, UsA =. w,t + :Ld¢8,', (2.1) 
t2xAa 
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1 12xA8 1 / c  ~ 12xAS' ~ o~= ~ ~ + ~ @, o~ = ~ .  + ~ d~j 

8~A -= T~A -4- XA3 k~A, 8~3A (xA1, xA~, XAS, t) = T~SA (XA1, xA'~, t) 
e33A = T33A ' lla/tA = ea~ A + xAS~ct~A, 113~A ~ taA, 1]asA ~ O~aA ~- xA3 ~ A  
1133A. ~ t3A 

There results from the relationships three to nine in (2.1) that 

{T~ ,  MI~, QA~ R A} ~ ~ A , - A  A,  ~A, = ZA } dxA 

S {~'?' ~ ~A~d~A~ = 0 

The integrals here are taken between the limits - -  hal2 and ha/2. 

The following notation i xA3 = 
hal2 

{q~A, qA, P~A, PSA} = {P~A, P3A, :ca a P~A, ~A s P3A} Ii ~a ~ = --  ha/2 

{NaA' NA' KaA} = S {PaA, PSA, zA "~ PaA} dxA a 
--h /S 

is introduced for the loads acting on the outer surfaces and along the layer outlines. 
Substitution of the relationships presented into (1.1) and (1. 2) and integration over 

the layer thickness permits obtaining an expression of the variational principle for the 
layer-shell 5YtA = 0. All the equations and dynamics relationships for an elastic iso- 
tropic reinforcing layer-shell, which are analogous to the equations in [7, 8], follow from 
this variational principle. Corresponding relations are derived also for the matrix layer. 

$. V l t t & t i o n a l  ptAnoLpIo for  & m t t l t i l l y l t l d  t . h t l l .  The x t, x ~, z 
coordinate system is connected with the middle surface of a multilayered shell. It is 
assumed that the displacement vector components are distributed as follows over the 
shell thickness 

u a = v~ + zq~,,, u~ = w + ~ (3.1) 

The displacements u a and u s agree, respectively, with V~A, V~M and w A, ta M on the 
coordinate surfaces of the separate layers. 

The condition that the displacements on the contact surfaces of adjacent layers is 
equal, reduces by analogy with [9] to the relationshil~ 

~ = s¢~A + (~ - -  ') *~M, ~ = S%A + (i - -  s) ' 3 ~  (3. ~) 

Here s ----- hA/(h A "3 L hM). 
In describing an equivalent shell model from a quasi-homogeneous material, the quan- 

tities ~a~  and ~a~t are eliminated from consideration by using the relationshil~(3.2) ; 
the subscript A in the ~Pt, A, ~sA and other quantities characterizing the reinforcing lay° 
e~s is omitted. 

The following hypotheses about the strain distribution over the thickness of an equiva- 
lent continuous shell are introduced: 
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e,,i~ A = e,,~M --- e,,~ + zv.~, s ~  A + (l --s) ~,,~M = '~ 

r%A + (i - -  s) v~lu = v~, s%a + (l - -  s) %M = V3 

Tim distribution of the internal forces and moments  is assumed to be according to the 
following laws: t2z ~. 

n (T~ s -{- T ~ )  = T ap + ~ M ~ (3.4)  
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Therefore,  the distribution of the longitudinal and flexural strains and micro~trains, as 
well as of the corresponding forces and moments  is taken to be linear over the thickness. 
Tim disUibution of the t tansver~  stxains and forces over the thickness is described by 
using the even functions t (z) and /* (z) which satisfy the conditions (here and every-  
where below, the integrals are taken over the thickness of the shell as a whole unless spe- 

cif ied o t h e r w i s e ) i f ( z ) { i , z 2 , 1 } d z = h { i , k o , ~ } ,  I f* ( z ) { i ' / * }dz=h{  i ' k - ~ }  (3.5)  

There follows from (3.4)  and (3 .5)  

' i {ra{~, MaI~, Qa} = hA -1- hld {T~ f~ -.}- T~,~,z (T~ ~ .if- r~.), QA a ~- QM a} d$ (3.6)  
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{,-"P, a a, e'., =P, i=, pa, i~, p~} _ hA + hu , ~ ,  
t 

(~ A a + ~M=)' eA a + eu  =' t - ,  euP' iA = + iu=' 

1 - .  i ~ ' i x 3 +  i~ ,  t - ~  iA d= 

The following notat ion is also int roduced:  

{q=, q, p=} = {P=, P,, ~-P=} '[ =="/' 
I z=--h/tt 

h ,  + h M (N., ~ + N ~ )  d=, ~r = hA + h~ (N A + NM) d= 

K = _  - t [ ] 

L a m_ t ,., s 
h A - + - h M ' ; ( K A  "~-~__$ KM~)dz  

The energy smoothing operat ion [10] appl ied to var ia t ional  re la t iomhi l~  with addition- 
al conditions for the reinforcing layer  and the matr ix  layer  results in formulat ion of  a 

var ia t ional  pr inciple  analogous to (1. 1) with addi t ional  conditions of  the type (1. 2) for 
a mul t i l ayered  shell  considered as a continuous shell  with internal  moments.  

The var ia t ional  pr inciple  permits der ivat ion of fundamental  relat ions for an e las t ic  
mul t i l ayered  shell  subjected to noncormervative loads. These m l a t i o m  are written below. 

The equation~ of motion are : 

O%P qP ----. 0, V , , ¢ "  J r  hap t ab - -  ph ~ ~ q = 0 V=taP-- b~e = -  ph ~ + 

v .  (y"P + z"P) - b,.P (ko" + =a) _ (p~ + i p) _ 

O s ~P 0 s ~P 
A t e +  A ~ ' - ' ~  + pa = 0 

a s ~P O ~ ,P  
V,, (s ap - -  z ''p) - -  baP (d a - -  ==) + pp + A~ ~ - -  ,4, ~ --~ 0 

where 

b=~ (V =p + z =p) + (i 3 + p 3) ,t- p3 = 0 
b=p (s "p - -  z =p) --~ p3 = 0 

t I M 
Az = T 2  phS -J- h (t - -  s) " - - - - ' ~  ' 

$2 As=h [IA'J~IM (,aS),' ] 

The kinematic relationships are: 

eap ~ Vav p - -  bapw , 

cool == V=w q- bapvp, 
~,,p = v = % - -  bap % ,  

$ 

A= ~ hi  M • (t - -  s)= 

F'a = V a %  4- bap*P 

Vs ~ ~S, ts ~ ~S 
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~13 : x ~  - -  kat 3 
~Ja "~- z/2k2 ((°a + "Oa -~ eaf3v[3)' ~a = 1/2k2 [Vl  - -  ta "-~ ea~ ( v~ - -  ta)] 

The  e las t ic i ty  relat ionships a te :  
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s ~  q - ( t - - . ~  t2 ~a4 J°',t~,-b'" 12 --m " ' ~  

t2  t2  (t - -  s) 

Qa = 2h [sl~ A -f- (t - -  s) p,~] ~a _~_ 2hs [p,~ - -  P'A] ~t  
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R = h Is (~'A + 2J'I'A) "3L- (t. - -  $) (~'M + 2p, M)] 13 3 + hs (~'m + 2 l ~  - -  

~'A - -  2IXA) ~3 ~ h [s~ A + ( |  - -  s) ~'M] aa~TaIt 

[ , ] 

t~  = r ~ ( ~  + e~.'~) + (M "~ + X ~ )  %.'~ + (m ~ - -  X~) ~.~.'~ + (Q~ + ~") ~'~ 

Y"~ + z"~ = ( M ~  + X~'5 ( ~  + %.'~) 
sa~ __ za~ : (ma'r __ ~"'r) (6.r~ _~_ e.r..~ ) 

c ~ = Q~ + (M ~ + X ~ )  % + ( m ~  - -  X ~'a) I~a + T ~  % 

k0a" -~- a a = (M al~ - -  X aft) o)~ , d a - -  ot a _~ (m af~ - -  X aft) o)f~ 

$ ¢t 3 
la + pa : (Qlt -4-x ~) (8~" + e .Z ' ) - f - (R  + r) Lv a -4- ~ (v - t a ) j  

[ s a ~a) 7 ,  
pa = .ra (6~ -~ e.~') -f- r L t~ A- ~ (v l~=n ,  p. J r 

The relationshil~ 
Eaf3"t~ -~- ~A M aaff~a't5 + 2J~A Maa~a f~8 A , M  , 

are used here .  
The  boundary condit ions a te :  

on the contour  Cz 
t~f~na ~ N ~t, ¢¢tn a = N ,  y:tf~ _.~ z~lz ~ K ~, s ~  __ zrtf~ = L ~ 

on the contour C~ 
v ~ : V a ,  w = W ,  q ) a : q ~ a ,  ' ~ = ~ F : t  
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The equations and relationships obtained above result in known dependences in a num- 
ber of particular cases [2--5, 9, 10]. 
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The motion of gas which initially fills the whole space and is subjected to an 
instantaneous liberation in a thin layer of initial internal energy E 0 and momen- 
tum I0 is considered. The asymptotic behavior of solution for various relations 
between E 0 and l0 is investigated numerically. 

When solving unsteady lxoblerns of gasdynamics it is often interesting to investigate 
the asymptotic properties of motion, which are determined for a fairly long time t and 
are independent of initial data details. In the majority of cases these properties are de- 
fined by self-similar solutions. The transition of the flow to the self-similar rrtode can 
be traced by solving the exact problem with initial and boundary conditions for the input 
Euler equations. 

Let us consider the plane motion of a perfect inviscid gas free of thermal conductivity 


